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Spiking neural networks (SNNs) are a promising energy-efficient alternative to artificial neural networks
(ANNs) due to their rich dynamics, capability to process spatiotemporal patterns, and low-power con-
sumption. The complex intrinsic properties of SNNs give rise to a diversity of their learning rules which
are essential to functional SNNs. This paper is aimed at presenting a comprehensive overview of learning
rules in SNNs. Firstly, we introduce the basic concepts of SNNs and commonly used neuromorphic data-
sets. Then, guided by a hierarchical classification of SNN learning rules, we present a comprehensive sur-
vey of these rules with discussions on their characteristics, advantages, limitations, and performance on
several datasets. Moreover, we review practical applications of SNNs, including event-based vision and
audio signal processing. Finally, we conclude this survey with a discussion on challenges and promising
future research directions in this area.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

The human brain is the best-known intelligent system, per-
forming functions such as perception, reasoning, and control with
a power consumption of nearly 20 W [1]. There have been many
artificial intelligence (AI) models inspired by the brain. Rosenblatt
[2] proposed the perceptron to realize binary classification of input
patterns. Lecun et al. [3] applied convolutional neural networks
(CNNs) to handwritten digit recognition. Recently, neural networks
based on attention mechanisms [4] have invoked a new wave of
research. Although ANNs have achieved great success in many
fields [5], they have the following drawbacks: 1) the training and
inference of ANNs consume huge amounts of energy [6]; 2) limita-
tions such as poor robustness and catastrophic forgetting [7]. How-
ever, these problems do not exist in the brain where neurons have
complex spatiotemporal dynamics, communicating and processing
information through discrete spikes. Additionally, neurons are con-
nected in a hierarchical way, forming different functional neural
networks with diverse plasticity. How to introduce the above char-
acteristics to construct more energy-efficient and robust AI models
is an open problem in AI research.
1.1. Unique characteristics of spiking neural networks

Spiking neural networks (SNNs) mimic the way the human
brain process information by taking advantage of discrete and
asynchronous spikes, thus they are believed to have the capability
to process spatiotemporal information efficiently [8–10]. The basic
building blocks of SNNs are spiking neurons. Due to the description
of the generation of spikes at different levels of bio-fidelity, there is
a diversity of spiking neuron models such as Hodgkin-Huxley (H-
H) model [11], Izhikevich model (IM) [12]. Additionally, by utiliz-
ing the time dimension, spiking neurons can represent information
in a sparse and robust way [13].

SNNs are bridges between brain science (BS) and AI. On the one
hand, neuroscientists use SNNs to simulate biological neural
networks to deepen their understanding of the brain [14–16]; On
the other hand, AI researchers draw inspiration from BS to
build energy-efficient and robust neural networks [17,18].
However, Due to the non-differential nature of spikes, training
efficient and high-performance SNNs has remained a major
difficulty [19–21].
1.2. Motivation

In recent years, SNNs have attracted enormous research inter-
est. There has been an upward trend in SNN-related papers. To
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visualize this trend, we present Fig. 1, which illustrates the number
of SNN papers that are available on the Web of Science since 2015.

Learning is an essential part of SNNs that adapts a network to
perform specific tasks, such as classification or object detection.
Fig. 2 shows some of the important learning rules over the past
two decades. SpikeProp [22] is the earliest spike-based backpropa-
gation in multilayer SNNs. Tempotron [23] can perform binary
classification tasks in analogy to perceptron. Remote supervised
method (ReSuMe) [24] and spike pattern association neuron
(SPAN) [25] are classical spike sequence learning rules. Masquelier
and Thorpe [26] apply spike-timing-dependent plasticity (STDP) to
multilayer neural networks inspired by ventral visual pathways to
enable unsupervised feature learning. In 2015 and beyond, SNNs
have been dominated by deep networks. Cao et al. [27] propose
converting a pre-trained ANN to an SNN. Kheradpisheh et al. [28]
use STDP to train deep spiking CNNs layer by layer. SuperSpike
[29] and spatio-temporal backpropagation (STBP) [30] train multi-
layer SNNs via surrogate gradients. Spike-element-wise (SEW)
ResNet [19] is proposed to combat degradation problem in deep
SNNs. Bu et al. [31] realize ultra-low-latency inference in ANN-
converted SNNs.

Several survey papers [32–41] have so far reviewed recent
advances in SNNs. However, some of these papers have a limited
scope of learning rules, for instance, [36,34,41] focus on supervised
learning, [32,33] have an emphasis on learning rules in multilayer
SNNs. Moreover, most of the above surveys only cover the papers
published until 2021. Nonetheless, many important breakthroughs
in learning rules in SNNs have occurred since 2022. Additionally,
none of the surveys cover pulse-coupled neural networks (PCNNs),
which are cortex models exhibiting synchronous oscillation behav-
ior and have been widely applied to image processing [42–44].
Fig. 1. The number of SNN papers published after 2015.

Fig. 2. The evolution of le
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1.3. Contribution

This paper surveys the advances in learning rules in SNNs, pro-
viding insights into both techniques and performance in a system-
atic way.

The key contributions of this article are summarized as follows.
First, we provide a systematic review of the evolution of learning
rules in SNNs, where many of them have not been reviewed in pre-
vious surveys, and present comparisons between the state-of-the-
art using results reported on several popular datasets. Second, we
review practical applications of SNNs, including event-based vision
and audio signal processing. Third, we discuss a number of chal-
lenges and promising future research directions.
1.4. Organization

The rest of this survey is structured as follows. We start by pro-
viding the basic concepts of SNNs including neuron and network
models, synaptic plasticity, and neural coding. Next, in Section 3,
we review the commonly used neuromorphic datasets. Section 4
presents a hierarchical classification of learning rules in SNNs
and analyzes the research trend and their characteristics, advan-
tages, limitations, and performance on several datasets. Section 5
reviews practical applications of SNNs. Finally, Section 6 discusses
some challenges and directions of this field.
2. Basic concepts of SNNs

SNNs involve more neuroscience-related concepts than ANNs.
To better analyze the learning rules in SNNs, basic concepts of
SNNs are introduced in this section, including neuron and network
models, synaptic plasticity, and neural coding.
2.1. Neuron models

There are billions of neurons in the human brain which have a
basic structure as shown in Fig. 3. Dendrite is the input terminal.
The cell body integrates incoming spikes received by different
branches of dendrites and emits a spike when its membrane poten-
tial reaches the threshold. Spikes travel along the axons to other
neurons via synapses.

To emulate the generation of spikes with different levels of bio-
fidelity and computational cost, a variety of spiking neuron models
have been proposed. For simplicity and mathematical tractability,
leaky integrate-and-fire (LIF) [45], spike response model (SRM)
[46] and PCNN neuron [14] models are widely used in SNNs. To
better formalize these models, Table 1 summarizes the main nota-
tions used in the following equations.
arning rules in SNNs.



Fig. 3. Diagram of a neuron. It can be divided into three parts: dendrite, cell body,
and axon.

Table 1
Notation list.

Notation Description

s;R;C Time constant, input resistance and capacitor of a neuron,
respectively

F Feeding input of a neuron
L Linking input of a neuron
V Membrane potential of a neuron
E Dynamic threshold of a neuron
S Output spike train of a neuron

tjs Time of jth spike of output spike train

Si Input spike train from ith synapse

tji
Time of jth spike from ith synapse
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LIF model dates to 1907 [45], when the mechanism of generat-
ing spikes had not yet been revealed, so neurons were modeled as a
parallel circuit of resistance R and a capacitance C as shown in
Fig. 4a. When the input current I is injected into the capacitor, its
voltage V rises. Meanwhile, charges on the capacitor will leak
through the resistor. A spike will be emitted whenever V reaches
the threshold Vth, which is then reset to the resting voltage Vrest .
Fig. 4b depicts the dynamics of a LIF neuron under constant input,
which can formally be described in differential form as:

sm
dV
dt

¼ � V � Vrestð Þ þ RI þ SðtÞ Vrest � Vthð Þ ð1Þ

SðtÞ ¼
X
tj6t

d t � tjs
� � ð2Þ

where sm ¼ RC is the time constant of the membrane. When work-
ing with differential equations, it is convenient to denote a spike as
a Dirac delta function d tð Þ, so the postsynaptic spike train S tð Þ can be
presented as a sum of Dirac functions at different output spike
times tjs.
CR

I V

Vrest

Vth

Fig. 4. The LIF model. (a) Diagram of the LIF model circuits. (b) Ne
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Synapse transmits spikes via neurotransmitter which acts like a
low pass filter with synaptic weight. Dendrite integrates the
weighted and filtered synaptic current, obtaining the total input
current I. The dynamics of these operations are given by:

ss
dI
dt

¼ �I þ
X
i

wisiðtÞ ð3Þ

SiðtÞ ¼
X
ti6t

d t � tji
� �

ð4Þ

where ss is the synapse time constant. tji denote the presynaptic
spike times of ith afferent. The sum runs over all presynaptic neu-
rons i. wi and siðtÞ are the corresponding synaptic weights and
presynaptic spike trains, respectively.

It is customary to simulate SNNs in discrete time using Euler’s
method. To reduce computational costs, the synaptic filter effect
is often ignored, but there are also researchers [47] incorporating
this filter dynamics to improve the convergence of SNNs training.
In addition, there are some variants of the LIF Model such as quad-
ratic integrate-and-fire (QIF) and integrate-and-fire (IF) models.

SRM uses spike response kernels to model a neuron’s mem-
brane potential in response to its input and out spikes [46]. A com-
monly used form is given as follows:

VðtÞ ¼
X
i

wi

X
ti6t

e t � tji
� �

þ
X
tj6t

g t � tjs
� �þ Vrest ð5Þ

where e and g are the input and output spike response kernel,
respectively.

SRM neuron models are appealing as they can add other fea-
tures simply by embedding them into the kernel. In addition, since
the membrane potential is explicitly expressed, the simulation of
SRM models is often event-based, thus less cost and time-
consuming than LIF models.

The PCNN neuron is a two-compartmental model [42], as
shown in Fig. 5. The dendrite tree has two distinct inputs, the pri-
mary input termed feeding input F, and the auxiliary input termed
linking input L. They are represented as leaky integrator given by

sf
dF
dt

¼ �F þ If ð6Þ

sl
dL
dt

¼ �Lþ Il ð7Þ

where sf ; sf ; If and Il are the time constants and synaptic currents
of the feeding and linking input, respectively. The synaptic currents
uronal dynamics of a LIF neuron under the constant current.



Fig. 5. Schematic of a PCNN neuron. It consists of three parts: dendrite tree, modulation, and spike generator.
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can be spikes, constants, analog time-varying signals, or any
combination.

The linking input modulates the feeding input by multiplication
resulting in the membrane potential V.

V ¼ F 1þ bLð Þ ð8Þ

where b is the linking strength.
The spike generator will emit a spike whenever the membrane

potential crosses the threshold E. Unlike LIF models resetting the
membrane potential, the PCNN neuron feeds back to the threshold,
which is another leaky integrator given by

se
dE
dt

¼ �Eþ VESðtÞ ð9Þ

where SðtÞ denotes the output spike train of the PCNN neuron. se is
the time constant and VE is the amplitude gain.
2.2. Network models

Neurons are connected to form neural networks following some
connection patterns, as shown in Fig. 6. There are three types of
feedforward connections, convolutional, local, and full connection.
Convolutional and local connections both have local visual recep-
tive fields, but in convolutional connection, the weights are shared
between all receptive fields, while in local connection, each recep-
tive field has its own set of weights, which is more biologically
plausible [48]. Full connection layers are often used to classify
extracted features. Recurrent connections consist of self-
recurrent, lateral, and feedback connections. Zhang and Li [49]
added self-recurrent connections to implement local memory.
Diehl and Cook [50] used feedback connections to implement
winner-take-all mechanism. Cheng et al. [17] introduced lateral
connections to improve the recognition robustness against noise.
The last type of connection is the residual connection which can
Fig. 6. Connection p
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solve the degradation problem in deep ANNs and is also the key
to deep SNNs [19,20].

Network models can be constructed using the above connection
patterns. We review three types of network models as follows. The
PCNN is a cortex model originated from the simulation of syn-
chronous oscillation behavior in the primary cortex of cats [42].
The classical PCNN and its variants such as the spiking cortical
model (SCM) [51] have been widely used in image segmentation
[52,53], fusion [54–56], enhancement [57–59], invariant texture
retrieval [60], and many other image processing tasks [61–63].
Although a vast body of works utilize PCNNs for image processing,
less attention has been paid to learning rules for PCNNs as we will
see in the following. Based on the characteristics of ventral visual
flow, Riesenhuber and Poggio[64] proposed the HMAX model.
Serre et al. [65] expanded HMAX into the field of computer vision.
Masquelier and Thorpe Masquelier and Thorpe [26] proposed a
spiking version of HMAX equipped with STDP for unsupervised
feature learning. Single layer networks (SLNs), multilayer Percep-
tron (MLP), recurrent neural networks (RNNs), and Convolutional
neural networks (CNNs) are network models widely used in deep
learning [66]. VGG and ResNet are popular neural architectures
for deeper CNNs which have been adopted by a large number of
high-performance SNNs.

2.3. Synaptic plasticity

Synaptic plasticity refers to the modulation of synaptic weights
[67]. In 1949, Hebb [68] proposed Hebb’s postulate, and it can be
simply stated as ”neurons that fire together, wire together [69]. ”
Subsequent finding of long-term potentiation [70] provided exper-
imental evidence for Hebb’s postulate. LTP together with long-term
depression (LTD) regulates synaptic weights bidirectionally, serv-
ing as the synaptic basis for learning and memory. The induction
of LTP and LTD is spike-timing dependent. Studies [71,72] demon-
strated that the relative timing of the pre and postsynaptic spikes
atterns in SNNs.
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determine the direction and magnitude of synaptic modification.
This phenomenon is known as spike-timing-dependent plasticity
(STDP) [73]. Fig. 7a shows two neurons connected by a synapse,
and Fig. 7b illustrates the relationship between the amount of
change in synaptic weights and the timing of pre and postsynaptic
spikes.

Fitting experimental data with exponential function, we can
formalize STDP as

Dw ¼
Aþ exp �Dt

sþ

� �
Dt > 0

�A� exp Dt
s�

� �
Dt < 0

8><
>: ð10Þ

where Aþ and A� are the modulation magnitudes for LTP and LTD,
respectively. sþ and s� are the corresponding time constants of
the learning window, and Dt ¼ tpost � tpre is the time difference
between a pair of pre and postsynaptic spikes. In STDP modeling
studies, Song et al. [73] found that synapses modified by STDP com-
pete with one other, resulting in a bimodal distribution of synaptic
weights. Guyonneau et al.[74] showed that a neuron with STDP-
modified synapse stimulated by a repeatedly presented spike pat-
tern will be selective to it and decrease response latency. STDP also
enables neurons to learn visual features in an unsupervised way
[26,50,75].

Increasing experimental observations demonstrate that neuro-
modulators play a vital role in synaptic plasticity. They can change
the polarity [76] or adjust the time window of STDP [77]. Frémaux
and Gerstner [78] proposed three-factor rules to incorporate the
influence of neuromodulators. Inspired by these observations,
researchers model neuromodulator effects to implement bio-
plausible supervised learning [79] and reinforcement learning
[80] for image recognition.
2.4. Neural coding

Stimulus, such as light or odors are converted to spikes for neu-
ral processing, a process known as neural coding. Currently, there
are three main coding methods applied in SNNs: rate, temporal
and direct coding.

Rate coding converts input stimulus into Poisson-distributed
spike trains, with firing rates proportional to the input intensity.
To reduce the computational cost, the binomial distribution is
commonly used instead of Poisson distribution [17].
Fig. 7. STDP. (a) Two neurons are connected by a synapse equipped with STDP. (b) Relati
of milliseconds, when the presynaptic spike is earlier (later) than the postsynaptic spike
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As rate coding represents information via firing rate, i.e. spike
count over a short time, a single spike contains little information.
temporal coding is concerned with the timing of a spike. A com-
mon temporal coding method is time-to-first-spike (TTFS) coding
[81] in which a larger input intensity corresponds to an earlier
spike. Therefore, TTFS coding requires fewer spikes to encode infor-
mation than rate coding, resulting in a lower power consumption
and inference latency [82].

Rueckauer et al. [83] suggested that the variability in rate cod-
ing impairs the performance of SNNs. So many studies [84,85] used
a trainable spiking neuron layer to convert analog input that can be
regarded as synaptic currents into output spike strains, which is
called direct coding [86].
3. Neuromorphic datasets

The performances of SNNs are often evaluated on existing ANN-
oriented datasets, for example CIFAR-10 [87] and ImageNet [88],
which are static-image datasets containing no temporal informa-
tion. Before feeding them into SNNs, researchers often convert
such frame-based data to spike trains using coding methods
described in Section 2.4. However, these ANN-oriented datasets
can’t exploit the spatiotemporal processing capability of SNNs
[89]. To this end, researchers have gathered neuromorphic datasets
inspired by the biological visual system.

Neuromorphic datasets are recorded by dynamic vision sensors
(DVS) which capture the changes in the sensing field using two
channels. The On channel for intensity increases and the Off chan-
nel for intensity decreases. Currently, neuromorphic datasets can
be divided into two categories: DVS-converted and DVS-captured
[90]. DVS-converted datasets are converted from traditional data-
sets, such as MNIST and CIFAR-10. Researchers use a DVS camera
to record static images by moving the image or camera. Both N-
MNIST [91] and CIFAR10-DVS [92] are acquired by this method.
In contrast, DVS-captured datasets are recorded via real-world
motion. DVS128 Gesture [93] is a typical example. We present an
overview of the main characteristics of well-known neuromorphic
datasets in Table 2. In the following, we review these datasets in
detail.

N-MNIST: The N-MNIST dataset [91] is converted from the
MNIST dataset. Researchers first displayed MNIST examples on
an LCD monitor, and then moved the ATIS sensor mounted on a
pan-tilt unit to record the image. It includes a training set with
60,000 samples and a test set with 10,000 samples.
onship between spike timing and synaptic weight change. In a time window of tens
, the weight increases (decreases), resulting in LTP (LTD).



Table 2
Summary of well-known neuromorphic datasets.

Datase Year Data category #classes URL

N-MNIST 2015 DVS-converted 10 http://www.garrickorchard.com/datasets
N-Caltech101 2015 DVS-converted 101 http://www.garrickorchard.com/datasets
CIFAR10-DVS 2017 DVS-converted 10 https://figshare.com/s/d03a91081824536f12a8
DVS128 Gesture 2019 DVS-captured 11 http://research.ibm.com/dvsgesture
ASL-DVS 2019 DVS-captured 24 https://github.com/PIX2NVS/NVS2Graph
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N-Caltech101: The N-Caltech101 dataset [91] is a neuromor-
phic version of the N-Caltech101 dataset. It was recorded using
the same method as the N-MNIST dataset and contains 9146
images in 101 classes.

CIFAR10-DVS: The CIFAR10-DVS dataset [92] is a spiking ver-
sion of the CIFAR-10 dataset. The dataset was recorded by moving
images in front of a DVS camera. It consists of 10,000 examples in
10 classes, with 1000 examples in each class.

DVS128 Gesture: The DVS128 Gesture dataset [93] was
recorded by a DVS128 camera and contained 11 kinds of hand ges-
tures from 29 subjects under 3 kinds of illumination conditions.

ASL-DVS: The ASL-VDS dataset [94] was recorded in an office
environment with low environmental noise and constant illumina-
tion. It contains 24 classes of gestures corresponding to 24 English
letters.
Fig. 8. Illustration of the three-level hierarchical classification of learning rules in SNNs.
the hierarchy, respectively.
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4. Learning rules in SNNs

In this section, we first introduce the hierarchical classification
of SNN learning rules which gives an overview of these rules. Then,
we analyze the research trends in SNN learning rules. Finally, we
review these rules in a hierarchical way and summarize the
state-of-the-art performance for comparison on several datasets.

4.1. Hierarchical classification of SNN learning rules

In order to help illustrate an overall structure for SNN learning
rules, we categorized the existing learning rules hierarchically,
which is presented in Fig. 8. Previous papers [35,95] classify SNN
learning rules according to the usage of data label, i.e. supervised
and unsupervised learning [35] or the biological realism and plas-
Bold only, bold italic, and italic only style means the first, second, and third level of

http://www.garrickorchard.com/datasets
http://www.garrickorchard.com/datasets
https://figshare.com/s/d03a91081824536f12a8
http://research.ibm.com/dvsgesture
https://github.com/PIX2NVS/NVS2Graph
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ticity scale of learning rules [95]. We differ from these papers by
considering the working principles of the SNN learning rules. The
details of each group of learning rules will be discussed later.

4.2. Analysis and trends

Before we dive into individual rules, we summarize the most
representative SNN learning rules in Table 3, sorted according to
their publication dates, for analysis of the evolution and trends in
this field. LIF and SRM are mainly used neuron models for their
simplicity and mathematical tractability. Direct coding has become
popular due to its advantages over rate coding in accuracy [86].
Temporal coding is recently limited to certain rules such as timing
gradient. Notably, there has been a clear trend in formulating effi-
Table 3
Summary of some representative learning rules in SNNs

Ref. Year Venue Neuron
Model

Coding
Method

Learning Rule

[22] 2002 Neurocomp. SRM Temporal Timing gradient
[23] 2006 Nat. Neurosci. LIF – Voltage gradient
[96] 2006 Neural Comput. SRM – Likelihood gradien
[26] 2007 PLoS Comput. Biol. IF Temporal STDP-based
[97] 2009 Neural Netw. SRM Temporal Timing gradient
[24] 2010 Neural Comput. LIF; H-H;

IM
– W-H rule-based

[98] 2012 PLoS One SRM – W-H rule-based
[99] 2013 PLoS One LIF; IM – W-H rule-based
[100] 2014 Neurocomp. SRM Temporal STDP-based
[50] 2015 Front. Comput.

Neurosci.
LIF Rate STDP-based

[101] 2015 Neural Comput. SRM – Likelihood gradien
[27] 2015 IJCV IF Rate ANN pre-training
[102] 2015 IJCNN IF Rate ANN pre-training
[103] 2015 IJCNN LIF – Voltage gradient
[104] 2016 Science LIF – Voltage gradient
[105] 2016 arXiv IF Direct ANN pre-training
[106] 2016 Neurocomp. IF Temporal STDP-based
[107] 2016 Front. Neurosci. LIF Rate Voltage gradient
[83] 2017 Front. Neurosci. LIF Direct ANN pre-training
[108] 2018 IEEE T-NNLS IF Temporal Timing gradient
[109] 2018 NeurIPS IF; QIF – Activation gradien
[28] 2018 Neural Netw. IF Temporal STDP-based
[80] 2018 IEEE T-NNLS IF Temporal STDP-based
[110] 2018 Neural Netw. LIF Direct Voltage gradient
[30] 2018 Front. Neurosci. LIF Rate Activation gradien
[85] 2019 AAAI LIF Direct Activation gradien
[111] 2019 IEEE T-Cyb. LIF – Voltage gradient
[112] 2019 IEEE T-CDS LIF Rate STDP-based
[48] 2019 Neural Netw. LIF Rate STDP-based
[113] 2019 Front. Neurosci. IF Rate ANN pre-training
[82] 2020 Int. J. Neural Syst. IF Temporal Timing gradient
[114] 2020 ICASSP SRM Temporal Timing gradient
[115] 2020 CVPR IF Rate ANN pre-training
[116] 2020 ICLR IF Rate ANN pre-training
[117] 2021 IEEE T-NNLS IF Direct ANN-coupled trai
[17] 2021 IJCAI LIF Rate Activation gradien
[84] 2021 ICCV LIF Direct Activation gradien

[118] 2021 AAAI IF Temporal Timing gradient
[119] 2021 ICLR IF Direct ANN pre-training
[120] 2021 ICML IF Direct ANN pre-training

[121] 2021 IEEE T-NNLS IF Direct ANN pre-training
[122] 2021 IJCAI IF Direct ANN pre-training
[123] 2021 Sci. Adv. LIF Rate Other bio-plausib

rule
[19] 2021 NeurIPS LIF; IF Direct Activation gradien

[20] 2021 arXiv LIF Direct Activation gradien
[124] 2022 AAAI IF Direct ANN pre-training
[31] 2022 ICLR IF Direct ANN pre-training
[125] 2022 ICLR LIF Direct Activation gradien
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cient learning rules such as ANN pre-training and activation gradi-
ent for deeper SNNs (> 10 layers) to perform challenging tasks,
such as image classification on ImageNet and CIFAR-100.
4.3. Bio-plausible rules

Driven by considerations of biological plausibility, bio-plausible
rules primarily focus on implementation via experimentally
observed biological phenomena such as STDP, coherent oscillation
[126], and self-backpropagation [127]. We classify these rules into
STDP-based, Widrow-Hoff (W-H) rule-based [128] and other bio-
plausible rules according to the underlying principles they are
derived from.
Network Model Dataset

MLP Iris
SLN –

t SLN –
HMAX Caltech-101
MLP Iris
SLN –

SLN –
SLN –
MLP Iris
SLN MNIST

t MLP –
CNN CIFAR-10; Neovision2
CNN MNIST
SLN –
SLN TIDIGITS
CNN CIFAR-10
HMAX 3D-Object
CNN MNIST; N-MNIST
VGG-16 MNIST; CIFAR-10; ImageNet
MPL MNIST

t RNN –
CNN Caltech-101; ETH-80; MNIST
HMAX Caltech-101; ETH-80;
CNN MNIST

t CNN MNIST; N-MNIST
t CNN N-MNIST; CIFAR10-DVS; CIFAR-10

SLN –
CNN Caltech-101; MNIST
SLN MNIST
VGG-16; ResNet-20/34 CIFAR-10; ImageNet
MLP Caltech-101; MNIST
MLP MNIST
VGG-16; ResNet-20/34 CIFAR-10; CIFAR-100; ImageNet
VGG-16; ResNet-20/34 CIFAR-10; CIFAR-100; ImageNet

ning CifarNet; AlexNet CIFAR-10; ImageNet
t CNN MNIST; Fashion-MNIST
t CNN CIFAR10; CIFAR10-DVS; DVS128

Gesture
VGG-16; GoogleNet MNIST; CIFAR-10; ImageNet
VGG-16; ResNet-20 CIFAR-10; CIFAR-100; ImageNet
VGG-16; ResNet-20/34;
RegNetX

CIFAR-10; CIFAR-100; ImageNet

ResNet-50/110 CIFAR-10; CIFAR-100; ImageNet
VGG-16; PreActResNet-18/34 MNIST; CIFAR-10; CIFAR-100

le MLP MNIST; NETtalk; DVS128 Gesture

t ResNet-18/34/50/101/152 ImageNet; DVS128 Gesture; CIFAR10-
DVS

t ResNet-104/482 CIFAR10-DVS; ImageNet
VGG-16; ResNet-18/20 CIFAR-10; CIFAR-100; ImageNet
VGG-16; ResNet-18/20/34 CIFAR-10; CIFAR-100; ImageNet

t VGG-11;ResNet-19/34 CIFAR-100; ImageNet; CIFAR10-DVS



Z. Yi, J. Lian, Q. Liu et al. Neurocomputing 531 (2023) 163–179
4.3.1. STDP-based rules
As mentioned in Section 2.3, STDP observed in biology experi-

ments can enable a neuron to learn visual features in an unsuper-
vised way. Thus STDP-based rules have been studied in many
research. Masquelier and Thorpe [26] proposed an HMAX-based
SNN trained with unsupervised STDP to extract visual features
from a temporal coded image. Many subsequent works were based
on this method. Tavanaei and Maida[129] incorporated probabilis-
tic STDP to improve performance. Kheradpisheh et al. [106]
expanded this method to perform robust invariant object recogni-
tion tasks. Unsupervised STDP can extract repeated features; how-
ever, it has difficulty in detecting rare but diagnostic features. To
this end, Mozafari et al. [80] introduce reward signals to STDP,
called reward-modulated STDP (R-STDP), to improve feature
extraction ability.

There are several ways to formalize supervised STDP. Wang
et al. [100] combined STDP and anti-STDP to implement supervised
learning for the output layer of a two-layer SNN. When a neuron
emits spikes correctly, STDP is applied, otherwise, anti-STDP is
applied. Beyeler et al. [130] used supervisory neurons to send exci-
tatory signals to target output neurons, making them spike at the
desired firing rate. Illing et al. [131] implemented supervised learn-
ing via target post spike trace. Synaptic weights update at every
presynaptic spike times. When the actual post spike trace is lower
than the target value, the corresponding weight increases, and
decreases instead. Hao et al. [79] introduced dopamine-
modulated STDP (DA-STDP) combined with synaptic scaling to
realize supervised learning.

As early works to perform digit recognition on MNIST using
unsupervised STDP, Querlioz et al. [132,133] proposed a single-
layer network with lateral inhibition and dynamic threshold, yield-
ing an accuracy of 93.5% with 300 neurons. They used memristors
as synapses. Although the rectangular STDP time-window was
used for modulation of synaptic weights in these works, the mem-
ristive devices can implement biological STDP learning rule easily
[134,135]. Diehl and Cook [50] increased the network scale and
improved its biological plausibility, yielding an accuracy of 95%.
It was further improved by Saunders et al. [48,136] with local con-
nections, resulting in reduced parameters and training time. To
take advantage of the feature extraction capabilities of CNNs, Xu
et al. [137] proposed deep CovDenseSNN which uses spiking neu-
rons to learn features extracted by CNNs.

Recent works adopted CNN-like neural architecture for SNNs.
Kheradpisheh et al. [28] used STDP to train a three-layer spiking
CNN layer-by-layer. The complexity of learned features increases
along the network hierarchy. A support vector machine (SVM)
was used for feature classification and achieved an accuracy of
98.6% onMNIST. Mozafari et al. [138] improved the biological plau-
sibility of this model by placing SVM with a layer of decision-
Fig. 9. Illustration of the ReSuMe rule [24]. The amount of modification of an excitatory
spikes and the learning window. The STDP process is triggered by the desired output sp
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making neurons trained with R-STDP. Unlike previous works,
SpiCNN [112] used rate coding with Poisson distribution and an
output layer trained with supervised STDP.

4.3.2. W-H rule-based rules
The W-H rule [128] is a classical learning rule proposed for ANN

neurons defined as

Dwi ¼ gxi yd � yoð Þ ð11Þ
where xi is the input of the ith synapse. yo and yd are the actual and
desired output of the neuron, respectively. g is the learning rate.
The W-H rule requires no need for gradient calculation, so there
is a bunch of SNN learning rules that present a spiking analogy to
this rule.

ReSuMe [24] interprets the W-H rule through two biological
processes: STDP and anti-STDP, which is illustrated in Fig. 9. It
updates the synaptic weights according to

dwiðtÞ
dt

¼ sdðtÞ � soðtÞ½ � aþ
Z þ1

0
TðsÞsiðt � sÞds

� �
ð12Þ

where sdðtÞ and soðtÞ are the desired and actual output spike trains,
respectively. a is a constant used for speeding up the convergence of
learning. TðsÞ is the STDP-like learning window. The convolution of
the learning window and the ith input spike train

Rþ1
0 TðsÞsiðt � sÞds

represents the trace of the spike train.
Unlike the spike-driven update of the synaptic weights in

ReSuMe, the perceptron-based spiking neuron learning rule
(PBSNLR) [139] transforms a spiking neuron to a perceptron at
fixed points in time, where the membrane potential in the misclas-
sification intervals is utilized for synaptic updating. Inspired by the
biological property that the synaptic delay is not constant, Taher-
khani et al. [140] proposed a synaptic delay learning rule, delay-
learning ReSuMe (DL-ReSuMe), which can improve the learning
accuracy and convergence speed. To overcome the one-way adjust-
ment problem in DL-ReSuMe, Zhang et al. [141] proposed synaptic
weight-delay plasticity for ReSuMe (ReSuMe-DW) and PBSNLR
(PBSNLR-DW) that can decrease the delay to increase the mem-
brane potential at desired spike times.

Inspired by ReSuMe, the chronotron I-learning [98] is a heuris-
tic learning rule, which adjusts the synaptic weights proportionally
to their corresponding synaptic currents. SPAN [25] uses convolv-
ing kernels to convert input, actual, and desired spike trains into
analog signals. Unlike SPAN, precise-spike-driven (PSD) synaptic
plasticity [99] only convolves input spike trains.

These rules make neurons fire spikes at desired times. By emit-
ting different spike trains, neurons can classify input spike pat-
terns. However, they do not extend well to deep networks which
are vital for solving complex tasks.
synaptic weight is proportional to the trance induced by the convolution of input
ikes, while the anti-STDP process is triggered by the actual output spikes.
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4.3.3. Other bio-plausible rules
STDP modifies synaptic weights depending on the pre and post-

synaptic neuronal activity, which lacks global teaching signals for
the whole network. To this end, researchers use neural activity-
encoded errors to drive synaptic changes that can be backpropa-
gated to upstream layers. Zhang et al. [123] introduced self-
backpropagation (SBP) into a three-layer SNN to reduce the com-
putational cost without affecting accuracy. Payeur et al. [142] pro-
posed burst-dependent synaptic plasticity to achieve hierarchical
credit assignment in multi-layer SNNs.

Xie et al. [143] found that STDP cannot be applied to recurrent
synaptic connection in PCNNs, which obstruct the learning in
PCNNs. Inspired by the neural activity-dependent property of
STDP, they proposed spike-synchronization-dependent plasticity
(SSDP) rule to improve the spike synchronization. Experimental
results showed that SSDP-based PCNNs can get better segmenta-
tion performance. In addition, they designed a novel memristor-
based circuit model of SSDP.

4.4. Gradient-based rules

Application of powerful gradient descent formalism to SNNs is
complicated by the hard non-linearity of spike generation mecha-
nism: small changes in synaptic weights can cause large changes in
the output spike train, i.e. spikes times or counts. Specifically, the
gradient of the output spike train with respect to the synaptic
weights rwSðtÞ is zero except at spikes times where it is ill-
defined [29]. According to the insights on how to circumvent the
problem, gradient-based rules can be classified into three cate-
gories, direct training, ANN pre-training, and ANN-coupled
training.

4.4.1. Direct training
Direct training approaches can be categorized into likelihood,

voltage, timing, and activation gradient approaches according to
the state variable used for the optimization of the objective
function.

Likelihood gradient The threshold nonlinearity can be smoothed
via stochasticity which makes it possible to perform gradient des-
cent to maximize the likelihood of generating desired output spike
trains. There are various methods to introduce stochasticity, such
as stochastic threshold [96] or synapse [144] Pfister et al. [96] used
likelihood gradient to train single-layer networks with temporal
coding. This approach recently has been extended to multilayer
networks [145,101,144,146]. However, it has not been applied to
deep networks for complex tasks.

Voltage gradient The voltage of a neuron at time instants is dif-
ferentiable with respect to its synaptic weights under certain con-
ditions or approximations which facilitates the formulation of
gradient-base rules.

Tempotron [23] learns to classify binary spike patterns by min-
imizing the distance between the firing threshold and shunted
membrane potential maximal on error trials. It changes the synap-
tic weights according to

Dwi ¼ gðy� ŷÞ
X

tj
i
<tmax

K tmax � tji
� �

ð13Þ

where g is the learning rate. tmax denotes the time of maximal mem-

brane potential value. tji denotes the jth spike time of the ith
synapse. K tð Þ is the normalized postsynaptic potential (PSP), which
is a double exponential. y 2 0;1f g is the label of input patterns. ŷ
denotes the prediction of the neuron, which is determined by

ŷ ¼ 1 V tmaxð Þ P Vth

0 V tmaxð Þ < Vth

�
ð14Þ
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The limitation of tempotron to binary classifications was overcome
by multi-spike tempotron (MST) [104] which solves multi-
classification problems by mapping input spike patterns to desired
numbers of output spikes. MST introduces the spike-threshold-
surface (STS) function, which maps critical thresholds to the num-
bers of emitted spikes, to formulate a continuous objective function
differentiable with respect to neuron’s synaptic weights.

To reduce the computational costs of MST, Yu et al. [111] uti-
lized the linear assumption for threshold crossing [22] to derive
the efficient threshold-driven plasticity (TDP) algorithm. Subse-
quent efficient multispike learning (EML) [147], joint weight-
delay plasticity (TDP-DL) [148] further improve MST from various
perspectives. Unlike the rules in Section 4.3.2, these multi-spike
learning rules can train a neuron to emit a desired number of
spikes which is proportional to the number of underlying clues,
without specifying the spike times. Thus this type of learning is ter-
med aggregate-label learning [104]. In contrast to MST and TDP,
membrane-potential driven aggregate-label learning (MPD-AL)
[149] constructs the error functions based on the membrane
potential instead of the critical thresholds.

The above-mentioned rules are limited to single neurons, which
hinders their practical applications. To this end, Zhang et al. [199]
extended aggregate-label learning to multilayer SNNs for multi-
modal pattern recognition. An alternative approach is encoding
static images into sparse spike representations via non-spiking
methods, such as S1C1-SNN [150], SCNN [151], CNN-TDP [152]
and UMP-TDP [152]. This approach can achieve comparable perfor-
mance to deep SNNs on small-scale datasets, such as MNIST and
Fashion-MNIST.

Normalized approximate descent (NormAD) [103] was derived
under the consumption of sparse spike trains, which approxi-
mates the gradient of membrane potential at a given time instant
with respect to synaptic weights. This approximation method has
been effectively applied to multilayer SNNs with a weight-fixed
convolutional layer [110], and spiking convolutional auto-
encoders which yield 99.08% accuracy on MNIST dataset [153].
Similarly, Zhang et al. [95,154] force the neuron to reset only at
desired output spike times [139,155] thus enabling easy calcula-
tion of voltage gradients. Unlike obtaining voltage gradient at
specific times, Lee et al. [107] ignored discontinuities of mem-
brane potential at spike times and treated the output of a neuron
as a linear function of its inputs which has filtered by the mem-
brane. They trained a spiking CNN, achieving an accuracy of
99.31% on MNIST.

Timing gradient The timing gradient approaches focus on the
neuron’s output spike times and compute the gradients with
respect to the neuron’s synaptic weights. Due to the event-driven
nature of spikes, these approaches allow for efficient even-based
network simulation.

SpikeProp [22] is the first algorithm applying backpropagation
to temporally coded networks of spiking neurons firing at most
one. Its formula is as follows:

Dwl
ij ¼ �g @L

@tlj

@tlj
@Vl

jðtljÞ
@Vl

jðtljÞ
@wl

ij

ð15Þ

where g is the learning rate, a positive constant. L is the loss func-

tion. Vl
j and tlj denote the membrane potential and spike of neuron j

in layer l, respectively. wl
ij is the synaptic weight from neuron i in

l� 1 layer to neuron j in l layer. The key challenge is to solve the

partial derivative @tlj=@V
l
jðtljÞ in Eq. 15. SpikeProp assumes that the

membrane potential of a neuron increases linearly in a small
enough region around the firing time as shown in Fig. 10. Thus,

@tlj=@V
l
jðtljÞ can be expressed as



Fig. 10. Illustration of linear approximation for threshold crossing [22]. It assumes
that the membrane potential of a neuron increases linearly in a small enough region
around the firing time. The sold line denotes the membrane potential when
threshold crossing.
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@tlj
@Vl

jðtljÞ
¼ �1

@Vl
jðtljÞ=@tlj

¼ �1X
i

wl
ij

@Kðtl
j
�tl�1

i
Þ

@tl
j

ð16Þ
where KðtÞ is used to describe the PSP of neuron j generated by the
input spike tl�1

i , which also denotes the output spike time of neuron
i in layer l� 1.

Multi-SpikeProp [97] overcomes the limitation of one spike in
SpikeProp and improves performance. Without approximation,
Mostafa [108] used IF neurons to obtain an analytical expression
relating input and output spike times. Comsa et al. [114,156] used
SRM with biologically realistic alpha function for membrane
dynamics and derived exact gradients with respect to input spike
times and synaptic weights. Kheradpisheh and Masquelier [82]
found that the first spike time of an IF neuron can approximate
ReLU activation, they thus derived a new learning algorithm for
multilayer SNNs with TTFS coding and achieved an accuracy of
97.4% on MNIST, which is comparable to [108,114].

Recent works extend the timing gradient approach to train dee-
per SNNs. To overcome gradient explosion and dead neuron prob-
lem encountered in timing gradient-based method, Zhang et al.
[157] proposed a rectified linear postsynaptic potential function
(ReL-PSP) based neuron model where membrane potential
increases linearly prior to postsynaptic spike time. They trained
convolutional SNNs, yielding 99.4% and 90.1% accuracy on MNIST
and Fashion-MNITST, respectively. Zhou et al. [118] applied the
method proposed by [108] to spiking VGG and GoogleNet with
deep ANN training techniques such as batch normalization (BN),
achieving an accuracy of 68.6% on ImageNet.

Activation gradient Activation gradient approaches smooth the
hard non-linearity due to the none-or-one response of spiking neu-
rons via modification of their activation function in forward or
backward path.

The hard thresholds of spiking neurons can be placed with soft
ones in forward propagation of SNNs. Huh and Sejnowski [109]
introduced active zone where the synaptic current is activated
gradually. They trained recurrent SNNs with backpropagation
through time (BPTT) to perform dynamic tasks such as predictive
coding. Liu et al. [158] found that all PCNN models can’t explain
the phenomenon that biological neurons stimulated by periodic
signals exhibit chaotic behavior. They thus proposed a
continuous-coupled neural network (CCNN) model to solve the
problem. CCNN is a mean-field model where the step function used
in PCNN is replaced by the sigmoid function which facilitates stan-
dard BP for training. CCNN also achieves better results in image
segmentation tasks than state-of-the-art visual cortex models.
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These methods modify the binary output of spiking neurons, which
is less friendly for low-power hardware implementation.

An alternative approach is to use surrogate gradients for back-
propagation. SuperSpike [29] and STBP [30] were the early works
applying gradient gradients to train multilayer SNNs. STBP uses
the explicitly iterative LIF model. An SNN with iterative LIF can
be unrolled in time as an RNN, which facilitates utilizing BPTT
for the wight update. STBP updates the synaptic weights as follows

Dwl
ij ¼ �g

X
t

@L

@St;lj

@St;lj
@Vt;l

j

þ @L

@Vtþ1;l
j

@Vtþ1;l
j

@Vt;l
j

 !
@Vt;l

j

@It;lj

@It;lj
@wl

ij

ð17Þ

where g is the learning rate. L is the loss function. St;lj , V
t;l
j , and It;lj

denote the output spike, the membrane potential, and the input
current of neuron j at time t in layer l, respectively. wl

ij is the synap-
tic weight from neuron i in l� 1 layer to neuron j in l layer. In Eq. 17,

the derivative of the spike function @St;lj =@V
t;l
j is not well defined. To

enable gradient descent, a surrogate derivative is used for approxi-
mation. A common family of the surrogate gradient is the rectangu-
lar function [30] given by

hðVÞ ¼ 1
a
sign V � Vthj j < a

2

� �
ð18Þ

where a is a hyper-parameter determining the shape for gradient
estimation.

Shrestha and Orchard [159] considered the temporal depen-
dence between spikes and interpreted the surrogate gradient as
the probability density function. Wu et al. [85] extended STBP to
deep convolutional SNNs with neuron normalization(NeuNorm).
Zheng et al. [160] proposed threshold-dependent batch normaliza-
tion (tdBN) for alleviating the gradient vanishing or explosion
problem and maintaining the firing rate. Combined with STBP,
tdBN realizes direct training of spiking ResNet-50 on ImageNet.
As a time-dependent variant of tdBN, temporal effective batch nor-
malization (TEBN) [161] can regularize the temporal distribution.
To overcome the degradation problem in deep SNNs, Fang et al.
[19] proposed SEW ResNet which can realize identity mapping.
Feng et al. [162] proposed a multi-level firing (MLF) unit to combat
the gradient vanishing problem. Hu et al. [20] scaled SNNs up to
104 layers on ImageNet and 482 layers on CIFAR-10, achieving
76.02% and 91.9% accuracy, respectively. The above studies have
fully demonstrated the scalability of the surrogate gradient
method.

The shape and smoothness of surrogate gradients have an
impact on performance. To avoid the heuristic choice of surrogate
gradients, Li et al. [163] proposed differentiable spike (Dspike) that
can find the optimal shape and smoothness for surrogate gradients.
Deng et al. [125] proposed temporal efficient training (TET) to
solve the SNN generalization problem which results from incorrect
surrogate gradients, obtaining a remarkable accuracy of 83% on
CIFAR10-DVS.

The neuronal heterogeneity is a critical property of biological
neural networks which can be incorporated into SNNs. Fang et al.
[84] proposed a parametric LIF (PLIF) model which has learnable
time constants. Wang et al. [164] proposed a learnable threshold
scheme during training. Yao et al. [165] proposed a unified gated
LIF (GLIF) neuron, wherein bio-features in different neural behav-
iors are fused by the gating factor. These methods can improve
the learning of SNNs, thus obtaining better accuracy with fewer
time steps.

Combined with BPTT, the surrogate gradient approach can
achieve spatiotemporal credit assignment in very deep SNNs
[20]. However, the large computational graph from the unrolled
networks requires tremendous hardware resources during train-
ing. Local learning scheme provides an alternative to assign spa-
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tiotemporal credit in SNNs. Deep continuous local learning
(DECOLLE) [166] uses layer-wise local readouts with random and
fixed weights. Ma et al. [167] proposed a local learning scheme,
wherein each layer is trained with a local auxiliary classifier.
Inspired by the teacher-student learning approach, Yang et al.
[168] proposed local tandem learning (LTL) to transfer the feature
representation of a teacher ANN to a student SNN through layer-
wise loss function. These local learning rules provide a competitive
performance while consuming less computational costs than BPTT.
4.4.2. ANN pre-training
Leveraging the fact that the firing rate of IF models can approx-

imate the activation value of ReLU functions, ANN pre-training
approaches first train an ANN with constraints, then convert it into
an SNN with or without post-conversion techniques fine-tuning
the parameters.

The first ANN pre-training method was proposed by Cao et al.
[27] which imposes constraints on CNN such as using ReLU activa-
tion function and removing biases to avoid negative outputs. Diehl
et al. [102] suggested using weight normalization or threshold bal-
ancing to reduce conversion error, which is exactly equivalent
mathematically [113]. Rueckauer et al. [105,83] proposed spike
subtraction, also called soft reset, to alleviate information loss
caused by resetting and implemented spiking equivalents of com-
mon operations such as BN which allow conversion of deeper CNNs
including VGG-16 and GoogLeNet Inception-V3. Sengupta et al.
[113] argued that removing the constraints in ANN training [83]
suffers significant accuracy loss in the conversion process and pro-
posed spike-norm to extend converted SNNs to residual architec-
tures. RMP-SNN [115] used soft reset and a threshold balancing
method that alleviates the firing rate vanishing problem. Hu
et al. [121] proposed a compensation mechanism to reduce dis-
cretization errors and firstly built a converted SNN with more than
100 layers. Ding et al. [122] placed ReLU with rate norm layer
(RLN) for ANN training, enabling direct conversion without setting
thresholds manually.

In recent works, most studies focus on a theoretical analysis of
conversion errors which facilitate methods reducing them and thus
inference latency of the converted SNNs. Deng and Gu [119] added
a threshold and shift in ReLU activation function to reduce conver-
sion error. Li et al. [120] proposed SNN calibration which calibrates
the parameters in converted SNN to match the activations in ANN.
Bu et al. [124] used optimal initialization of membrane potentials
to implement expected error-free conversion. Bu et al. [31] went
deeper into error analysis and proposed a quantization clip-floor-
shift activation function to replace the ReLU, achieving ultra-low
latency (4 time steps) of converted SNNs.

There are also some interesting works that explore post-
conversion fine-tuning of converted SNNs to reduce latency and
increase accuracy. Rathi et al. [116] proposed a spiking-timing
dependent surrogate function to train a converted SNN which con-
verges within a few epochs and requires fewer time steps. Rathi
and Roy [169] jointly optimized membrane leak and firing thresh-
old along with synaptic weights to reduce latency and increases
activation sparsity. Wu et al. [21] proposed a progressive tandem
learning (PTL) framework that compensates the conversion errors
layer-wise by tandem learning (TL) [117] with an adaptive training
scheduler.

The ANN pre-training approach leverages the superior perfor-
mance of ANNs while avoiding tremendous hardware overhead
for direct training of SNNs, and thus quicker implementation on
low-power neuromorphic hardware. However, this approach only
works for static datasets so far and can’t exploit the temporal
dynamics of SNNs which makes them the third generation of neu-
ral networks [170].
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4.4.3. ANN-coupled training
Unlike copying the weights from a well-trained ANN in the ANN

pre-training approach, ANN-couple training consists of an SNN and
an ANN with shared weights. The SNN feeds forward spike trains,
while the ANN back propagates errors to update the shared
weights. Wu et al. [117] first proposed this idea termed tandem
learning in which the networks are coupled layer-wise. They
demonstrated its effectiveness on both static and neuromorphic
datasets. Kheradpisheh et al. [171] used a proxy ANN to backprop-
agate the errors of an SNN on the basis of rate-coded LF neurons
approximating ReLU. They outperformed [117] on the CIFAR-10
dataset with an accuracy of 93.11%.
4.5. Performance comparison

So far, the majority of works on SNNs have used image classifi-
cation datasets as benchmarks. To shed more light on the perfor-
mance of SNN learning rules, we summarize the state-of-the-art
results of existing methods tested on two types of datasets, i.e. sta-
tic and neuromorphic datasets, which are presented in Table 4 and
5, respectively.

The static datasets in Table 4 include MNIST, CIFAR-10/100, and
ImageNet. Due to the simplicity of MNIST, the recent accuracies
reported on MNIST are pretty high (> 99%). Therefore, CIFAR-
10/100 and ImageNet have become more popular to evaluate deep
SNNs. Recent results reported on these datasets are dominated by
ANN pre-training [31,120] and activation gradient approach
[20,125]. Though ANN pre-training methods are better than activa-
tion gradient-based methods in terms of accuracy, ANN pre-
training methods need more time steps for inference.

Concerning the neuromorphic datasets, we include N-MNIST,
CIFAR10-DVS, and DVS128 Gesture in Table 5. Similar to MNIST,
the accuracies reported on N-MINST are above 99% in recent pub-
lications. The CIFAR10-DVS is a challenging dataset. TEBN [161]
reported the best accuracy of 84.90% on CIFAR10-DVS with neuro-
morphic data augmentation [172]. Notably, almost all methods are
based on activation gradient since they can exploit the temporal
dynamics of the neuromorphic datasets.
5. Applications of SNNs

SNNs have potential advantages in representing and processing
spatiotemporal patterns due to their inherent temporal dynamics.
Thus, a vast body of studies explored the applications of SNNs in
spatiotemporal tasks, such as event-based vision and audio signal
processing. In this section, we introduce the applications of SNNs
in these two fields.

Compared to conventional frame cameras, brain-inspired event
cameras have several advantages, such as low power and high tem-
poral resolution [9]. The SNNs are well-suited for processing the
spatiotemporal data generated by event cameras due to their tem-
poral dynamics. Orchard et al. [173] proposed an SNN for visual
motion estimation, in which LIF neurons with synaptic delays
implement motion-sensitive receptive fields. Haessig et al. [174]
proposed an SNN-based direction sensitive (DS) unit for optical
flow estimation. Paredes-Valles et al. [10] incorporated STDP learn-
ing to a hierarchical SNN which exhibits motion selectivity after
training. Except for the above low-level vision applications, SNNs
can also perform high-level vision tasks, such as recognition. The
HMAX-inspired HFirst model [173] utilizes the spike timing pro-
vided by event cameras for the character recognition task. Xiao
et al. [175] improved HFirst by integrating a tempotron classifier.
Recent works [159,84,30,117] apply spike-based backpropagation
to training deep SNNs, obtaining high accuracy on complex neuro-
morphic datasets created by event sensors [91,92].



Table 4
State-of-the-art results on the neuromorphic datasets, including MNIST, CIFAR-10/100, and ImageNet. – denotes the number of time steps is not reported in the paper or is not
applicable to the method. T denotes the number of time steps. y denotes local learning rules.

Dataset Reference Year Learning Rule Accuracy T

MNIST Diehl’s method [50] 2015 STDP-based 95.00 –
Lee’s method [107] 2016 Voltage gradient 99.31 –
SDNN [28] 2018 STDP-based 98.40 –
STBP [30] 2018 Activation gradient 99.42 –
Zhou’s method [118] 2021 Timing gradient 99.33 –
RNL [122] 2021 ANN pre-training 99.46 –
PLIF [84] 2021 Activation gradient 99.72 8
STDBP [157] 2022 Timing gradient 99.40 –

CIFAR-10 NeuNorm [85] 2019 Activation gradient 90.53 12
RMP-SNN [115] 2020 ANN pre-training 93.39 512
TL [117] 2021 ANN-coupled training 90.98 8
tdBN [160] 2021 Activation gradient 93.16 6
Zhou’s method [118] 2021 Timing gradient 92.68 –
PLIF [84] 2021 Activation gradient 93.50 8
Dspike [89] 2021 Activation gradient 94.25 6
Calibration [120] 2021 ANN pre-taining 95.79 256
Proxy [171] 2022 ANN-coupled training 93.11 60
TET [125] 2022 Activation gradient 94.50 6
QCFS [31] 2022 ANN pre-taining 96.08 32
MLF [162] 2022 Activation gradient 94.25 4
TEBN [161] 2022 Activation gradient 95.60 6
LTL [168] 2022 Activation gradienty 95.28 32

CIFAR-100 RMP-SNN [115] 2020 ANN pre-training 70.58 1024
DIET-SNN [169] 2021 ANN pre-training 69.67 5
S-ResNet [121] 2021 ANN pre-training 70.62 350
RNL [122] 2021 ANN pre-training 75.10 –
Calibration [120] 2021 ANN pre-training 77.30 128
TET [125] 2022 Activation gradient 74.72 6
QCFS [31] 2022 ANN pre-training 79.62 32
TEBN [161] 2022 Activation gradient 78.76 6
LTL [168] 2022 Activation gradienty 76.08 32

ImageNet RMP-SNN [115] 2020 ANN pre-training 73.09 2048
S-ResNet [121] 2021 ANN pre-traning 73.77 350
tdBN [160] 2021 Activation gradient 67.05 6
Zhou’s method [118] 2021 Timing gradient 68.80 –
SEW-ResNet [19] 2021 Activation gradient 69.26 4
MS-ResNet [20] 2021 Activation gradient 76.02 5
Calibration [120] 2021 ANN pre-training 77.50 256
TET [125] 2022 Activation activation 68.00 4
QCFS [31] 2022 ANN pre-training 74.22 256
TEBN [161] 2022 Activation gradient 68.28 4
GLIF [165] 2022 Activation gradient 69.09 6

Table 5
State-of-the-art results on the neuromorphic datasets, including N-MNIST, CIFAR10-DVS, and DVS128 Gesture. – denotes the number of time steps is not reported in the paper or
is not applicable to the method. T denotes the number of time steps. y denotes neuromorphic data augmentation.

Dataset Reference Year Learning Rule Accuracy T

N-MNIST Lee’s Method [107] 2018 Voltage gradient 98.74 –
STBP [30] 2018 Activation gradient 98.78 –
SLAYER [159] 2018 Activation gradient 99.20 –
NeuNorm [85] 2019 Activation gradient 99.53 –
TL [117] 2021 ANN-coupled traning 99.31 –
PLIF [84] 2021 Activation gradient 99.61 10
LTMD [164] 2022 Activation gradient 99.65 15

CIFAR10-DVS NeuNorm [85] 2019 Activation gradient 60.50 –
TL [117] 2021 ANN-coupled traning 65.59 –
tdBN [160] 2021 Activation gradient 67.80 10
PLIF [84] 2021 Activation gradient 74.80 20
Dspike [89] 2021 Activation gradient 75.40 10
SEW-ResNet [19] 2021 Activation gradient 74.40 16
TET [125] 2022 Activation gradient 77.33/83:17y 10

TEBN [161] 2022 Activation gradient 84:90y 10

GLIF [165] 2022 Activation gradient 78.10 16

DVS128 Gesture SLAYER [159] 2018 Activation gradient 93.64 –
tdBN [160] 2021 Activation gradient 96.87 40
PLIF [84] 2021 Activation gradient 97.57 20
SEW-ResNet [19] 2021 Activation gradient 97.92 16
MLF[162] 2022 Activation gradient 97.29 40
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SNN-based acoustic models have shown great potential for
energy-efficient and high performance auditory information pro-
cessing tasks, such as automatic sound classification (ASC) [176–
178], automatic speech recognition (ASR) [179], and sound source
localization (SSL) [180]. Several works [176–178] have successfully
applied tempotron-based learning for ASC tasks. In these works,
conventional feature extraction methods, such as mel-frequency
cepstral coefficient (MFCC) and self-organizing map (SOM), are
used for generating spike patterns, which are then classified by
SNNs trained with the tempotron-based learning rule. Tavanaei
and Maida [181,182] applied STDP to features extraction from
raw speech signals. The extracted spike features are then post-
processed into real-valued feature vectors and classified by a tradi-
tional classifier, such as SVM. The biological plausibility of these
models is further improved by [183], wherein a fully SNN-based
ASC framework is presented by combining competitive STDP learn-
ing and tempotron-based classification. Recent studies apply deep
SNNs to auditory systems. Pan et al. [180] utilized surrogate gradi-
ent learning for SSL tasks. Deep SNNs trained with tandem learning
rule have been explored for speech separation [21] and large
vocabulary ASR [179].

6. Conclusion and future research directions

We presented a comprehensive survey of SNN learning rules, in
which we reviewed the most representative learning rules in SNNs
and provided discussions on their characteristics, advantages, lim-
itations, and performance on several popular datasets. Besides, we
introduced practical applications of SNNs in event-based vision
and audio signal processing. Here, we further discuss a few chal-
lenges and promising research directions which may foster real-
world applications in the field.

1. Learn lessons from deep learning. As we can see from the
paper, the performance of SNNs has improved a lot by utilizing
deep learning techniques, such as BPTT and BN. Even though
there is still a gap between ANNs and SNNs in terms of accu-
racy, deep learning techniques have great potential to may fur-
ther improve the performance of SNNs. On the one hand, the
unique characteristics of SNNs, which may increase their per-
formance, can be explored via deep learning techniques. For
example, recent works show that neural architecture search
(NAS) [184] can be exploited for finding better SNN architec-
tures [185,186]. On the other hand, the temporal dimension
and spike representation of SNNs should be considered when
applying training techniques in deep learning to SNNs. For
example, training deep SNNs using BPTT is constrained to work-
ing on dense tensors, limiting training speed and efficiency
[187]. Standard BN in SNNs does not show scalability to large-
scale datasets [188].
2. Draw inspirations from brain science. Biological observations
and mechanisms of the human brain are natural references to
creating intelligence. For example, burst-dependent plasticity
can solve the credit assignment problem in hierarchical net-
works [142]. Dendritic spines [189] can facilitate weight opti-
mization for pruning [190]. LIF neurons with lateral
interactions [17] have shown improved robustness to noisy
inputs. However, current SNNs mainly utilize single neuron
dynamics such as LIF, while network-level dynamics, for
instance, coherent oscillations [126] and chaos [191], are less
explored in SNNs [158]. Although PCNNs are more biologically
plausible [14] and the coupling mechanism has the potential
for robust pattern recognition [17,158], the learning rules for
them, as this survey revealed, have not been well developed.
We expect that exploring learning rules in PCNNs may help us
175
understand how the brain works and further improve the
robustness of existing methods.
3. Algorithm-hardware co-design for energy-efficient neuro-
morphic systems. In this methodology, design goals are
achieved by exploiting the synergism between algorithms and
hardware platforms. The SNNs are spatiotemporal networks
that are not well-suited for simulation on conventional hard-
ware. Thus, it is necessary to explore the efficient implementa-
tion of the SNNs and their learning rules. On the one hand,
spike-based computation in SNNs can be utilized for low-
power neuromorphic chips [192,193]. On the other hand, novel
devices may leverage more brain-like systems due to their
unique merits. For instance, the memristor has nonlinearity,
non-volatility, and is compatible with the CMOS technology
[194]. It can emulate the complex nonlinear dynamics of bio-
logical neurons and synapses [135,195,196,134] and learning
in SNNs [197,198]. We expect this paradigm to gain increased
popularity in the near future.
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